
Feature Importance for Model Fit:
Decomposing Mean Squared Error
in Regression

January 18, 2026

Abstract
We use Euler’s theorem to decompose predictive accuracy in regression models. The re-
sulting contributions allocate realized predictive performance across additive components
of a prediction, providing a natural, additive, and model-conditional measure of feature
importance. We also derive standard errors for the contributions, allowing formal inference
and facilitating model monitoring over time.

In this framework, a component contributes positively to predictive performance if it
moves the prediction closer to the outcome, either by directly explaining the outcome or
by correcting errors left by other components.

Under ordinary least squares estimated in sample, the resulting proportional attribu-
tions coincide with the Pratt decomposition of explained variance. Outside the estimation
sample and beyond ordinary least squares, the Euler decomposition remains well defined
for any predictionwith an additive structure, yielding a unified notion of feature importance
that does not rely on estimator-specific orthogonality conditions.
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1 Introduction
In regression and machine learning models, we often wish to gauge the

importance of individual features, especially when the number of included

features is large.
1

This objective has given rise to a wide range of feature-

importance measures.

In this paper, we focus on evaluating realized predictive performance

for a given, fitted model. We measure model fit as the reduction in mean

squared error relative to an intercept-only baseline predictor. This loss-

based notion of predictive performance is well defined both in and out of

sample and applies uniformly across linear and nonlinear prediction methods.

Rather than allocating importance across a space of potential models or

counterfactual feature inclusions, we attribute realized improvements in

predictive accuracy to additive components of the deployed prediction itself.

This perspective naturally supports model monitoring, diagnostics, and

performance attribution for an existing model whose structure and fitted

values are treated as fixed. The Euler decomposition provides a unified and

computationally efficient way to attribute realized improvement in predictive

accuracy across prediction components, without reference to the estimation

procedure that produced them.

We show that the reduction in mean squared error admits an exact Euler

decomposition when expressed in terms of its homogeneous components.

The resulting attribution allocates predictive fit across additive prediction

components based on their contribution to reducing realized forecast error.

The decomposition is model-conditional: it attributes realized predictive

performance for the prediction actually used and does not rely on counterfac-

tual refitting, feature removal, or perturbation. This mirrors the marginal

contribution framework used in portfolio risk attribution (Litterman, 1996;

Tasche, 2008), where total risk is allocated across additive portfolio compo-

nents, holding fixed the actual portfolio and without reference to the portfolio

construction method.

A large literature proposes measures of “relative importance” based on

partitioning predicted variation, including standardized coefficient measures

following Pratt (1987), heuristic variance partitions proposed by Bring (1995),

and Shapley-value or dominance-based decompositions developed by Linde-

man, Merenda, and Gold (1980) and Kruskal (1987). These approaches differ

in their axiomatic foundations and computational complexity, but they often

share a common focus on decomposing predictions or predicted variance

1
We use the term regression model in the broad sense of a model for predicting a continuous

outcome, rather than to refer to a specific estimation method.
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2 Decomposing Mean Squared Error in Regression

across features. Many of these measures prove useful when exploring alter-

native model specifications, comparing competing models, or interpreting

individual predictions. Our approach differs in that it attributes realized

predictive performance for a fixed, deployed model, rather than allocating

importance across hypothetical model variations.

In the proposed decomposition, an Euler component contributes positively

to predictive performance if it moves the prediction closer to the outcome,

either by directly explaining the outcome or by correcting errors left by other

components. Unlike variance- or correlation-based measures, the attribution

depends on how components interact within the fitted prediction rather than

just on their marginal associations with the outcome. The attribution requires

only realized predictions and their additive components, without refitting,

perturbation, or estimator-specific orthogonality conditions.

In linear regression models, predictions decompose naturally into regressor-

specific components given by features multiplied by their fitted coefficients.

The Euler decomposition applies equally to ordinary, weighted, or regularized

linear models, including generalized least squares, Ridge, Lasso, and Elastic

Net regressions. More generally, the same logic applies to any predictive

model whose predictions decompose into additive components of interest.

Finally, we derive standard errors for the Euler contributions that reflect

sampling variability in the data. This allows us to assess whether observed

variation in feature contributions across samples or over time is plausibly

attributable to noise or instead reflects changes in predictive relevance.

The remainder of the paper proceeds as follows. Section 2 introduces

the loss-based framework and derives the Euler decomposition of predic-

tive accuracy, together with standard errors. Section 3 examines the linear

regression case and its connection to in-sample OLS and the Pratt decom-

position. Section 4 presents Monte Carlo illustrations. Section 5 relates the

approach to existing feature-importance measures. Section 6 discusses exten-

sions, including grouped attributions and broader applicability. Section 7

concludes.

2 An Euler Decomposition of Explained Fit
After establishing notation and defining predictive accuracy, we can apply

Euler’s theorem to obtain an exact additive decomposition of model fit across

prediction components and derive the corresponding standard errors.
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2.1 Setup
Let 𝑦̃ ∈ R𝑁 denote a vector of observed outcomes with finite, nonzero variance

and define the centered outcome

𝑦 = 𝑦̃ − E[𝑦̃]. (1)

We interpret the intercept-only predictor 𝑦̂0 = E[𝑦̃] as the baseline model and

evaluate predictive performance relative to this baseline.

Throughout, expectations, variances, and covariances are sample averages.

Since 𝑦 is centered, E[𝑦] = 0 and Var(𝑦) = E[𝑦2].
Let 𝑦̂ ∈ R𝑁 denote the predictions of a regression or forecasting model,

and assume that 𝑦̂ is centered so that E[𝑦̂] = 0.
2

We measure predictive accuracy using mean squared error and define the

improvement in fit relative to the baseline predictor as
3

𝛥ℒ = Var(𝑦) − Var(𝑦 − 𝑦̂). (2)

With perfect predictions 𝑦̂ = 𝑦, predictive accuracy attains a maximum value

of Var(𝑦). With poor predictions, predictive accuracy can be close to 0 or

even negative.

If we scale the predictive accuracy by Var(𝑦), we obtain the standard

regression coefficient of determination

𝑅2 =
𝛥ℒ

Var(𝑦) = 1 − Var(𝑦 − 𝑦̂)
Var(𝑦) . (3)

Although the expression 𝑅2 = Var(𝑦̂)/Var(𝑦) is often treated as equivalent,

this is only true when predictions 𝑦̂ are orthogonal to prediction errors

𝑦 − 𝑦̂. Although this condition holds in-sample for ordinary least squares

regressions, this is a special case. Without this orthogonality, 𝛥ℒ remains a

measure of predictive accuracy while Var(𝑦̂)/Var(𝑦) compares the scale of

predictions and outcomes without any notion of alignment between them.

Expanding the squared error yields

𝛥ℒ(𝑦̂) = 2 Cov(𝑦, 𝑦̂) − Var(𝑦̂). (4)

2
If the fitted model includes an intercept and is evaluated on centered regressors, this

condition holds automatically. In regularized regressions, the intercept is typically excluded

from regularization to preserve this property.

3
Defining explained fit relative to an intercept-only baseline model is partly conceptual and

partly a matter of convenience. The intercept is not a feature, but a normalization that centers

predictions and defines the baseline level of predictive accuracy. The Euler decomposition

allocates only the incremental explained fit arising from additive prediction components beyond

the mean. When the contribution of the unconditional mean is of interest, we can track it

separately as a baseline component of total fit.
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This quantity measures realized predictive accuracy of the model relative

to the intercept-only baseline. It is well defined both in and out of sample

and does not rely on orthogonality or optimality conditions specific to any

estimation procedure.

2.2 Euler Decomposition
The improvement in predictive accuracy is the difference of two homogeneous

functions,

𝛥ℒ(𝑦̂) = 𝑔1(𝑦̂) − 𝑔2(𝑦̂), (5)

where 𝑔1(𝑦̂) = 2 Cov(𝑦, 𝑦̂) and 𝑔2(𝑦̂) = Var(𝑦̂). The first term 𝑔1 is homoge-

neous of degree one in 𝑦̂, while the second term 𝑔2 is homogeneous of degree

two in 𝑦̂.

For a function homogeneous of degree 𝑘, Euler’s theorem states 𝑔(𝑥) =
1

𝑘 𝑥
⊤∇𝑔(𝑥).
We can apply Euler’s theorem separately to each term. Euler’s theorem

implies

𝑔1(𝑦̂) = 2 Cov(𝑦̂ , 𝑦) = 𝑦̂⊤
𝜕𝑔1

𝜕𝑦̂
=

2

𝑁
𝑦̂⊤𝑦, (6)

and

𝑔2(𝑦̂) = Var(𝑦̂) = 1

2

𝑦̂⊤
𝜕𝑔2

𝜕𝑦̂
=

1

𝑁
𝑦̂⊤ 𝑦̂. (7)

Although Euler’s theorem resembles a local, gradient-based expansion, it

is an exact identity for homogeneous functions and holds globally for all

admissible inputs.

In linear regression and quadratic risk models, feature or asset contribu-

tions follow immediately from covariance algebra. These decompositions can

also be viewed as special cases of Euler decompositions of homogeneous fit or

risk measures. We adopt the Euler perspective because it extends unchanged

to nonlinear models and alternative loss functions.

In many regression models, the fitted signal admits an additive decompo-

sition

𝑦̂ =

∑
𝑗
𝑦̂ 𝑗 , (8)

where 𝑦̂ 𝑗 denotes a component of the prediction associated with feature,

regressor, or model component 𝑗.
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In linear regression models with an intercept and centered regressors,

each regressor-specific fitted component is automatically mean zero. In

more general additive decompositions, component means are not uniquely

determined: constants can be shifted arbitrarily across components without

affecting the overall fitted prediction. To obtain a well-defined attribution,

we therefore impose the normalization

E[𝑦̂ 𝑗] = 0 for all 𝑗 , (9)

which assigns all level effects to the intercept-only baseline. This normaliza-

tion does not affect the fitted predictions or the model’s predictive accuracy,

but it is essential for identifying component-level contributions.

This gives an exact additive decomposition of predictive accuracy in terms

of 𝑦̂ 𝑗 ,

𝛥ℒ(𝑦̂) =
∑

𝑗
𝐶 𝑗 (10)

𝐶 𝑗 = 2 Cov(𝑦, 𝑦̂ 𝑗) − Cov(𝑦̂ , 𝑦̂ 𝑗) (11)

= Cov(𝑦, 𝑦̂ 𝑗) + Cov(𝑒 , 𝑦̂ 𝑗). (12)

The structure of the Euler contribution has a geometric interpretation,

illustrated in figure 1. View 𝑦, 𝑦̂, and the additive components 𝑦̂ 𝑗 as vectors

in R𝑁 equipped with the inner product ⟨𝑎, 𝑏⟩ = Cov(𝑎, 𝑏). Because the model

has already been fitted, all of these objects in figure 1, including the realized

prediction error 𝑒 = 𝑦 − 𝑦̂, are fixed.

The Euler contribution 𝐶 𝑗 summarizes how component 𝑦̂ 𝑗 aligns with these

other realized objects. The first term measures how strongly the component

aligns with the outcome 𝑦. The second term rewards alignment with the

realized error. A component improves predictive accuracy to the extent

that it aligns with the outcome and, conditional on the full fitted prediction,

aligns with the error vector 𝑒. Such alignment indicates that the component

contributes to reducing the distance between the fitted prediction 𝑦̂ and the

outcome 𝑦, and therefore to lowering squared error. Conversely, a component

that points away from the error contributes to a larger distance between 𝑦̂

and 𝑦 and therefore worsens predictive accuracy. Components that primarily

reinforce other fitted components without aligning with the error receive

smaller or even negative contributions.

Additive prediction components 𝑦̂ 𝑗 necessarily distribute themselves

around the fitted value 𝑦̂. This distribution creates dispersion in alignment

with 𝑒 and thereby produces winners and losers in the Euler attribution, even
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Figure 1: Geometry of Euler Contributions to Model Fit
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The figure illustrates the Euler decomposition of realized regression fit for an outcome vector 𝑦
(black) and a fitted value 𝑦̂ = 𝑦̂𝑗 + 𝑦̂𝑘 (gray). Two additive prediction components, 𝑦̂𝑗 (red) and

𝑦̂𝑘 (green), appear with different alignment relative to the prediction error 𝑒 (blue).

In the Euler decomposition, the contribution of component 𝑦̂ℓ depends on both its covariance

with 𝑦 and its covariance with 𝑒 = 𝑦 − 𝑦̂. These covariances determine whether the component

contributes new explanatory direction or primarily overlaps with the existing fitted value.

In the diagram, both 𝑦̂𝑗 and 𝑦̂𝑘 align positively with 𝑦, but they exhibit different alignment

with the realized residual 𝑒. Here, 𝑦̂𝑗 makes a smaller Euler contribution to model fit because

its negative alignment with 𝑒 contributes to a larger distance between 𝑦̂ and 𝑦. Conversely, 𝑦̂𝑘
makes a larger Euler contribution because its positive alignment with 𝑒 contributes to a smaller

distance between 𝑦̂ and 𝑦.

The Euler decomposition and the figure do not rely on orthogonality assumptions; angles

represent empirical covariances.

when components exhibit similar alignment with 𝑦̂ itself.

A component receives a negative contribution when it primarily offsets

other components and thereby reduces predictive accuracy. Such negative

contributions arise naturally from the variance identity Var(𝑎 + 𝑏) = Var(𝑎) +
Var(𝑏) + 2 Cov(𝑎, 𝑏) and reflect the fact that predictive accuracy depends on

how components interact, not on their magnitudes in isolation.

When monitoring model performance across samples, a persistently

negative Euler contribution need not be problematic; it may simply reflect

stable redundancy or offsetting interactions among prediction components.

By contrast, a contribution that changes sign indicates a change in how the

component interacts with other parts of the fitted prediction. This suggests a

shift in the structure of the predictive signal, especially when the change is

statistically significant.

The Euler decomposition depends only on realized fitted values and

their additive components. It does not differentiate through the estimation

procedure that produced 𝑦̂ and does not require refitting, counterfactual
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Algorithm 1: Euler Feature Importance
# Inputs:
# y : (N,) vector of realized outcomes,
# centered internally by the algorithm
# Y_hat : (N, K) matrix of fitted signal components
# with y_hat = sum_j Y_hat[:, j]
#
# Baseline:
# The intercept -only baseline is E[tilde y].
# All computations are performed relative to this baseline.
#
# Notes:
# For linear models with an intercept and centered regressors ,
# Y_hat[:, j] = X[:, j] * beta[j] is already mean zero.
# Component centering ensures a unique attribution by assigning
# all level effects to the intercept -only baseline.
# Components are centered internally by the algorithm.
#
# For WLS or GLS, supply y and Y_hat already transformed
# by the appropriate weighting or whitening matrix.

# Center outcome (defines intercept -only baseline)
y_c = y - mean(y)

# Aggregate fitted signal and center
y_hat = Y_hat.sum(axis=1)
y_hat_c = y_hat - mean(y_hat)

# Center fitted components (normalization for attribution)
Yc = Y_hat - mean(Y_hat, axis=0)

# Euler contributions to improvement in MSE
for j in range(K): # Can be vectorized

C[j] = ( 2 * mean(y_c * Yc[:, j]) - mean(y_hat_c * Yc[:, j]) )

DeltaL = sum(C) # Reduction in MSE relative to baseline

# Plain (i.i.d.) standard errors for contributions
N = len(y)
a = 2 * y_c - y_hat_c # Observation -level term shared across

features
for j in range(K): # Can be vectorized

c_ij = a * Yc[:, j] # Observation -level contributions
SE[j] = sqrt( mean((c_ij - C[j])**2) / N )

# Outputs:
# C : Contributions to model fit
# SE : Standard errors for C
# DeltaL : Reduction in MSE relative to intercept -only baseline
# C / DeltaL : Proportional contributions
# May be unstable if abs(DeltaL) is near 0

feature removal, or orthogonality between fitted values and residuals.

Algorithm 1 summarizes the computation for a general predictive model.

Compared to many competing approaches, these computations are cheap, so

they accommodate a large number of attribution components and frequent

evaluation.
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2.3 Standard Errors

The Euler decomposition expresses feature importance as an estimate derived

from the evaluation data. Each contribution 𝐶 𝑗 is a sample average of

observation-level contributions 𝑐𝑖 𝑗 and therefore inherits sampling variability,

even when the fitted model is treated as fixed. In this sense, feature importance

is not merely a descriptive label attached to a model, but an estimated quantity

whose precision depends on the amount and structure of the evaluation data.

Appendix B shows that standard errors for the Euler contributions 𝐶 𝑗 =

(1/𝑁) ∑
𝑖 𝑐𝑖 𝑗 are

𝑆𝐸(𝐶 𝑗) =
√

1

𝑁
E
[
(𝑐𝑖 𝑗 − 𝐶 𝑗)2

]
. (13)

These standard errors quantify uncertainty due to sampling variability in

the data used to evaluate model fit. They do not reflect uncertainty arising

from re-estimation of the model, which we condition on throughout. As

a result, they apply both in-sample and out-of-sample and can be used to

assess whether observed variation in feature contributions across samples or

over time plausibly reflects noise or instead indicates changes in predictive

relevance.

3 Linear Regressions
Since linear regressions are obvious models with additive prediction com-

ponents, they are an interesting special case. However, it is important to

emphasize that the Euler decomposition does not depend on how the fitted

signal 𝑦̂ and its components 𝑦̂ 𝑗 are obtained.

3.1 Features as Prediction Components

For linear models of the form 𝑦̂ = 𝑋 𝛽̂ with centered regressors 𝑋, the fitted

signal decomposes naturally into regressor-specific components

𝑦̂ 𝑗 = 𝑋𝑗 𝛽̂ 𝑗 . (14)

Substituting into the Euler contribution yields

𝐶 𝑗 = 2, 𝛽̂ 𝑗 Cov(𝑦, 𝑋𝑗) − 𝛽̂ 𝑗 Cov(𝑦̂ , 𝑋𝑗) (15)

= 𝛽̂ 𝑗 Cov(𝑦, 𝑋𝑗) + 𝛽̂ 𝑗 Cov(𝑒 , 𝑋𝑗), 𝑒 = 𝑦 − 𝑦̂. (16)



Linear Regressions 9

The first term reflects the regressor’s marginal association with the outcome,

while the second captures how the regressor-specific fitted component aligns

with the realized prediction error after accounting for the full model.
4

This decomposition makes clear that marginal association alone does not

determine predictive contribution. A regressor may have a large marginal

correlation with 𝑦 yet contribute little to predictive accuracy if its fitted

component primarily reinforces other components without reducing residual

error. Conversely, a regressor with modest marginal explanatory power may

materially improve predictive accuracy by correcting systematic prediction

errors.

3.2 In-sample OLS and the Connection to R-Squared
Ordinary least squares constitutes a special case in which predictive accuracy,

explained variance, and correlation-based measures coincide in sample.

Under ols with centered variables, fitted values 𝑦̂ are orthogonal to residuals

𝑒 = 𝑦 − 𝑦̂, implying

Cov(𝑒 , 𝑋𝑗) = 0 for all 𝑗 , (17)

and therefore

𝐶 𝑗 = 𝛽̂ 𝑗 Cov(𝑦, 𝑋𝑗). (18)

Summing across features gives

𝛥ℒ =

∑
𝑗
𝛽̂ 𝑗 Cov(𝑦, 𝑋𝑗) = Cov(𝑦, 𝑦̂) = Var(𝑦̂), (19)

where the final equality again follows from OLS orthogonality. Normalizing

by Var(𝑦) yields

𝑅2 =
𝛥ℒ

Var(𝑦) =
Var(𝑦̂)
Var(𝑦) . (20)

In this knife-edge setting, decomposing predictive accuracy, predicted vari-

ance, and 𝑅2
are equivalent up to scale.

3.3 Pratt decomposition
Pratt (1987) proposes a decomposition of explained variance for linear regres-

sion based on marginal correlations. For standardized regressors estimated

4
Because the fitted signal is linear in the coefficients, Euler contributions can equivalently be

computed by differentiating with respect to 𝛽̂ 𝑗 rather than 𝑦̂𝑗 , treating 𝑋 as fixed.
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by ordinary least squares,

𝑅2 =

∑
𝑗
𝛽̂ 𝑗 Corr(𝑦, 𝑋𝑗), (21)

and the terms

𝑃𝑗 = 𝛽̂ 𝑗 Corr(𝑦, 𝑋𝑗) (22)

are interpreted as measures of variable importance.

The Pratt decomposition therefore allocates explained variance in the estima-

tion sample and implicitly relies on the absence of correlation between fitted

components and residuals.
5

By contrast, the Euler decomposition targets

realized predictive accuracy of a fixed fitted model, measured as the reduction

in mean squared error relative to a baseline predictor.

For in-sample ols with standardized regressors, proportional Pratt and

Euler attributions coincide exactly. This equivalence relies entirely on the

orthogonality conditions imposed by ordinary least squares. Outside this

setting, including out-of-sample evaluation, weighted or generalized least

squares, and regularized linear models, residuals generally correlate with

fitted components, so predicted variance no longer coincides with predictive

accuracy. In these cases, the ratio Var(𝑦̂)/Var(𝑦) measures the scale of

predictions but contains no information about their alignment with the

outcome.

The Euler decomposition continues to apply without modification in these

cases, providing an exact and additive attribution of realized predictive

accuracy when variance-based decompositions break down.

4 Monte Carlo Illustration
Table 1 provides a numerical illustration of the Euler decomposition. The

simulations use samples of 500 observations for fitting (when applicable) and

500 observations for evaluation, with results aggregated over 100,000 Monte

Carlo replications. The true data-generating process is a linear regression

with five features and coefficients {1.0, 0.6, 0.0,−0.4, 0.2}. All features are

normally distributed with mean zero and unit variance. Features 𝑖 and 𝑗

have pairwise correlation 𝜌𝑖 𝑗 = 𝜌|𝑖−𝑗|. In Panels A and B, 𝜌 = 0.7. The table

computes sample statistics like Pr(·), E[·] and Med(·) across Monte Carlo

replications.

5
Thomas, Hughes, and Zumbo (1998) provide a geometric interpretation of the Pratt

decomposition.
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Panel A verifies basic accounting identities and numerical stability. The

simulations achieve the intended average out-of-sample 𝑅2
values of 0.60,

0.30, 0.10, and 0.02. By construction, the Euler contributions sum exactly to

the total mean-square improvement over the constant-only baseline on each

evaluation sample, and this identity therefore also holds on average across

simulations. Values reported as 0 are within machine precision. The final

column shows that even correctly specified models can fail to improve upon

the mean-only baseline in finite samples, particularly when true 𝑅2
is low.

As expected, this probability decreases with sample size, although the table

does not explore that dimension.

Panel B compares Euler and Pratt attributions. For these direct compar-

isons, we use the covariance-form for the Pratt components, 𝑃𝑗 = Cov(𝑦, 𝑦̂ 𝑗),
which are equal to Pratt’s correlation-based formulation up to variable scale.

The first column confirms the analytical result that, for ordinary least squares,

Pratt and Euler attributions coincide exactly in the training sample. The

second column shows that this equivalence breaks down out of sample:

proportional Pratt and Euler shares can differ materially, with discrepancies

becoming large when 𝑅2
is low. The third column reports the same compari-

son for Elastic Net regressions. While the qualitative pattern mirrors the OLS

case, regularization dampens estimation error and reduces the divergence

between proportional Pratt and Euler attributions.

Panel C examines the role of feature correlation by varying 𝜌. The first

column shows that negative Euler contributions occur in finite samples but

are rare unless features are strongly correlated. The second column indicates

that most negative contributions are small in magnitude: the total share of

negative contributions remains modest except at very high correlations. The

final column confirms that the standard errors derived in appendix B deliver

accurate coverage in this setting.
6

For brevity, the table suppresses empirical Monte Carlo standard errors.

For nearly all entries, these are below 0.001. The main exceptions occur for

out-of-sample proportional differences between Euler and Pratt attributions at

very low 𝑅2
. In these cases, the denominators, 𝛥ℒ or

∑
𝑗 𝑃𝑗 , can occasionally

6
In the simulation setting, we can derive population values for the Euler contribution

components and evaluate standard error coverage relative to these values. The simulations draw

features 𝑋 ∼ 𝒩(0,𝛴𝑋 ) and outcomes 𝑦 = 𝑋𝛽 + 𝜀, with 𝜀 orthogonal to 𝑋 in the population. The

fitted prediction function is 𝑦̂ = 𝑋 𝛽̂. In this case, the population Euler contribution for feature 𝑗
is

𝐶 𝑗 = 2 Cov(𝑦, 𝑦̂𝑗) − Cov(𝑦̂ , 𝑦̂𝑗) = 𝛽̂ 𝑗
[
2(𝛴𝑋𝛽)𝑗 − (𝛴𝑋 𝛽̂)𝑗

]
.



12 Decomposing Mean Squared Error in Regression

Table 1: Monte Carlo Simulations

Panel A. Simulation characteristics
𝑅2 E[𝑅2

𝑜𝑜𝑠] E[|∑𝑗 𝐶 𝑗 − 𝛥ℒ|] Pr(𝛥ℒ < 0)
0.60 0.599 0 0

0.30 0.299 0 0

0.10 0.099 0 0.000

0.02 0.020 0 0.056

Panel B. Comparison to Pratt
In Sample OLS Out of Sample OLS Out of Sample Elastic Net

𝑅2 E[max𝑗 |𝐶 𝑗 − 𝑃𝑗 |] Med

(
max𝑗 |𝐶 𝑗/𝛥ℒ − 𝑃𝑗/

∑
𝑗 𝑃𝑗 |

)
0.60 0 0.015 0.006

0.30 0 0.029 0.010

0.10 0 0.075 0.022

0.02 0 0.591 0.124

Panel C. Variability of Contributions (Target 𝑅2 = 0.30)
Negative mass Standard Errors

𝜌 Pr(𝐶 𝑗 < 0) E[∑𝐶 𝑗<0
|𝐶 𝑗 |/𝛥ℒ] 95% coverage

0.00 0.029 0.002 0.949

0.30 0.078 0.006 0.949

0.60 0.183 0.038 0.949

0.90 0.200 0.203 0.948

The table reports Monte Carlo simulations with sample size 500 in the separate

training and evaluation samples across 100,000 replications. The data-generating

process is a linear model with 𝐾 = 5 features and coefficients {1.0, 0.6, 0.0,−0.4, 0.2}.
Regressors are jointly normal with mean zero, unit variance, and pairwise correlation

𝜌𝑖 𝑗 = 𝜌|𝑖−𝑗|. In Panels A and B, 𝜌 = 0.7; panel C varies 𝜌. We set noise variance to

target the listed population 𝑅2
values. Entries reported as 0 are numerically zero

within machine precision.

Euler contributions are 𝐶 𝑗 = 2 Cov(𝑦, 𝑦̂𝑗) − Cov(𝑦̂ , 𝑦̂𝑗) and sum to 𝛥ℒ = Var(𝑦) −
𝑀𝑆𝐸(𝑦 − 𝑦̂) on each evaluation sample, up to floating-point error. Pratt contributions

are 𝑃𝑗 = Cov(𝑦, 𝑦̂𝑗). (We use the covariance-form for Pratt components, which

coincide with Pratt’s correlation-based formulation for standardized variables.) The

corresponding proportional attributions are 𝐶 𝑗/𝛥ℒ and 𝑃𝑗/
∑
𝑗 𝑃𝑗 .

Panel A reports average out-of-sample 𝑅2
, the absolute add-up error |∑𝑗 𝐶 𝑗 −

𝛥ℒ|, and the frequency with which 𝛥ℒ < 0. Panel B reports medians of the

indicated discrepancies between Euler and Pratt attributions under ols and Elastic

Net estimation. Panel C reports the frequency of negative Euler contributions, the

share of total contribution mass attributable to negative 𝐶 𝑗 , and empirical coverage of

analytical 95% confidence intervals.

be close to zero, leading to numerically unstable proportional allocations

even when the underlying level contributions remain well behaved.
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5 Relation to Existing Measures
Feature-importance measures differ fundamentally in the object they seek

to explain. The framework developed here attributes predictive accuracy,

measured as the reduction in loss relative to a baseline predictor, to the

components of a fixed fitted model. The resulting attribution is explicitly

model-conditional and answers the question: which features actually generated
the predictive performance of the model that was used?

Many existing measures instead assess association with the outcome,

sensitivity of predictions to inputs, or counterfactual performance under

feature removal or refitting. These quantities are useful for other purposes,

but they generally do not decompose the realized predictive accuracy of a

given fitted model.

Measures that refit models under alternative feature combinations are

clearly different from our model-conditional contributions. They can assess

the potential usefulness of features within a modeling approach, but they

cannot attribute feature contributions to model fit for a specific, fixed model.

In particular, refitting-based measures are poorly suited to identifying models

that include the right features but assign them incorrect parameters.

5.1 Shapley and Perturbation Methods
Decompositions based on Shapley (1953), feature perturbations, and feature

permutations are general attribution tools that can be applied to a wide

range of model outputs or performance metrics. In practice, they are most

commonly used to explain individual predictions by attributing deviations of

a prediction function 𝑦̂ = 𝑓 (𝑥) from a baseline such as the unconditional

mean; see Lundberg and Lee (2017), for example. These prediction-level

explanations can be useful for interpreting individual predictions, but they

address a fundamentally different question than attribution of predictive

accuracy for the model overall.

In principle, Shapley values can be applied to measures of model fit, such as

mean squared error or 𝑅2
. Doing so requires counterfactual evaluation under

feature removal or refitting. Without refitting, Shapley and perturbation

methods measure the sensitivity of a fixed model to input disruption; with

refitting, they measure feature substitutability across alternative models.

In either case, the resulting attributions do not decompose the realized

performance of the fitted model actually used.

This distinction is particularly stark in sparse or regularized models.

A feature excluded from the fitted model contributes nothing to realized

predictive accuracy and therefore receives zero Euler attribution. With
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refitting, however, the same feature may receive positive importance because

it can substitute for other features in counterfactual re-optimizations.

Ordinary least squares again constitutes a special case. Because explained

variance is a homogeneous quadratic function of the fitted coefficients, Shapley

values for explained variance computed without refitting coincide with Euler

attributions. This equivalence reflects the quadratic structure of least squares

and does not extend to loss-based accuracy measures, regularized models, or

out-of-sample evaluation.

Shapley and perturbation methods are therefore best interpreted as tools for

assessing feature reliance, robustness, or substitutability under information

removal. They are also computationally expensive due to the large number of

feature subsets they evaluate. By contrast, the Euler decomposition provides

an exact, additive, model-conditional attribution of explained predictive

accuracy at negligible computational cost once fitted values are available.

Unlike the Euler contributions, related measures of feature importance

generally do not provide standard errors, even though they are clearly subject

to sampling variation. This may be because they are often treated as indicators,

not statistics, or because the standard errors are challenging to derive, which

is certainly true under re-fitting of the model.

5.2 Informal Measures
A number of ad hoc feature-importance measures are widely used in prac-

tice, including standardized coefficients, squared standardized coefficients,

absolute 𝑡-statistics, and marginal correlations with the dependent variable.

These measures are appealing for their simplicity but do not have a principled

interpretation as contributions to predictive accuracy.

Standardized coefficients adjust for regressor scale but ignore interactions

among regressors in producing the fitted signal. Absolute 𝑡-statistics and

𝑝-values measure statistical significance rather than contribution to model

performance. Marginal correlations reflect association with the outcome

rather than contribution to the fitted model.

While these quantities can be useful for exploratory analysis or hypothesis

testing, they address questions distinct from the decomposition of realized

predictive accuracy considered here.

6 Extensions
We briefly discuss that we can easily group Euler contributions and that Euler

contributions apply to a surprisingly broad class of prediction models.
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6.1 Grouped Euler Decomposition
Because Euler contributions sum to total explained predictive accuracy, we can

aggregate them naturally across groups of components to assess group-level

importance.

The Euler decomposition applies to any number of additive components,

including settings in which the number of components exceeds the number of

observations. When components are numerous or highly collinear, individual

contributions may be small or noisy, reflecting redundancy or cancellation

within the fitted model. In such cases, aggregating related components yields

more stable and interpretable attributions of predictive performance.

Suppose the prediction components are partitioned ex ante into disjoint

groups. Define the contribution of group 𝐺 as

𝐶𝐺 =

∑
𝑗∈𝐺

𝐶 𝑗 . (23)

By additivity of Euler contributions,

𝛥ℒ =

∑
𝐺
𝐶𝐺 , (24)

so the decomposition allocates total predictive accuracy exactly across groups.

Grouped Euler attribution reconciles diffuse importance across inter-

changeable individual components with concentrated attribution at the level

of shared information sources. This logic parallels Owen values (Owen, 1977),

which provide group-wise Shapley allocations, but avoids the combinatorial

cost of counterfactual evaluation. Once the fitted model is available, we

obtain grouped Euler contributions by direct aggregation at essentially no

additional computational cost.

6.2 Scope of Euler Attribution
The Euler decomposition applies to any prediction method whose fitted

signal admits a meaningful additive decomposition. The attribution is

model-conditional: it allocates realized predictive performance to the fitted

prediction components, regardless of how the prediction was constructed.

Any fitted signal that can be written as

𝑦̂ =

∑
𝑗
𝑦̂ 𝑗 (25)

therefore supports Euler attribution, which assigns importance directly to the

additive prediction components 𝑦̂ 𝑗 . This logic does not rely on least squares

or on orthogonality conditions.
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Linear regression provides the canonical example, since the fitted signal

decomposes naturally into regressor-specific components 𝑦̂ 𝑗 = 𝑋𝑗 𝛽̂ 𝑗 . The

same additive structure extends immediately to weighted and generalized

least squares, where Euler attribution follows after applying the implied

weighting or whitening transformation. Penalized linear models, including

Ridge (Hoerl and Kennard, 1970), Lasso (Tibshirani, 1996; Zou, 2006), and

Elastic Net (Zou and Hastie, 2005), likewise admit Euler attribution because

their fitted signals remain linear combinations of regressors, even though

these models violate ordinary least squares orthogonality conditions.

Generalized linear models also admit Euler attribution when we take the

fitted signal to be the linear predictor 𝜂̂ = 𝑋 𝛽̂, rather than the conditional

mean 𝑔−1(𝜂̂). On this scale, which often provides the most natural object for

interpretation, the fitted signal decomposes additively into regressor-specific

components 𝜂̂ 𝑗 = 𝑋𝑗 𝛽̂ 𝑗 .7

More broadly, any model with an explicitly additive predictor supports

Euler attribution on that scale. Generalized additive models provide such a

decomposition by construction. Many machine learning methods likewise

produce fitted signals that are additive in meaningful internal components;

see Hastie, Tibshirani, and Friedman (2009). Ensemble methods, including

boosting and random forests, express predictions as sums of weak learners,

while kernel methods admit additive representations in terms of training

examples or kernel components.

We treat prediction components as primitive and do not require them to

correspond to original input features. In polynomial models, neural networks,

and other nonlinear architectures, predictions are linear in large collections

of constructed features or internal activations, and Euler attribution assigns

realized predictive performance directly to these components.

When the object of interest is attribution to the original input variables

themselves, a direct additive decomposition of the fitted signal is generally

unavailable outside linear models. In such settings, attribution requires

aggregating marginal effects across nonlinear and interaction terms. The

path-integral attribution developed in Hentschel (2026) extends the loss-based

logic to input space, even when prediction components are not linear in the

original features.

7
Attribution on the mean scale generally requires nonlinear transformations and does not

admit a simple additive decomposition.
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7 Conclusion
This paper develops an Euler decomposition of realized predictive accuracy

for regression models with additive prediction components. Measuring

model performance as the reduction in mean squared error relative to an

intercept-only baseline yields an exact, additive, and model-conditional

attribution of explained fit across the components of a fitted prediction.

The resulting attribution answers a practical question: How much has

each component of a deployed model contributed to its realized predictive

accuracy? Unlike refitting-, perturbation-, or permutation-based approaches,

the decomposition conditions on the prediction actually used and avoids

counterfactual feature removal or re-optimization. This makes it well suited

for model monitoring, diagnostics, and performance attribution.

The framework applies to any predictive system whose fitted signal

admits an additive decomposition into components of interest. Because Euler

attribution operates solely on realized predictions and their components, it is

computationally cheap relative to model estimation, making frequent model

evaluation feasible.

We also derive standard errors for the Euler contributions that reflect

sampling variability in the evaluation data while conditioning on the fitted

model rather than the estimation process. These standard errors enable formal

inference on feature importance and facilitate monitoring of contribution

stability over time.

Under ordinary least squares evaluated in sample, orthogonality conditions

cause explained predictive accuracy to coincide with explained variance,

and proportional Euler attributions are equal to familiar variance-based

decompositions such as the Pratt allocation. Outside this special case,

including out-of-sample evaluation and regularized or weighted estimation,

explained variance no longer coincides with predictive accuracy. The Euler

decomposition, by contrast, remains well defined and additive.
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A Bivariate Regression Illustration
This appendix provides a simple bivariate illustration of the Euler decompo-

sition of improvement in mean squared error and contrasts it with marginal-

correlation-based allocations such as the Pratt (1987) decomposition. The

example is purely analytic and clarifies how Euler contributions behave in

the presence of correlated regressors.

A.1 Setup

Let 𝑋1 and 𝑋2 be centered regressors with unit variance and correlation 𝜌, so

that their covariance matrix is

𝛴𝑋 =

(
1 𝜌

𝜌 1

)
. (26)

Consider a linear prediction of the form

𝑦̂ = 𝛽̂1𝑋1 + 𝛽̂2𝑋2 , (27)

where 𝛽̂1 and 𝛽̂2 need not be ordinary least squares estimates.

We assume that the outcome 𝑦 is centered, so that the intercept-only

baseline prediction is zero. We measure predictive performance by the

reduction in mean squared error relative to this baseline,

𝛥ℒ = Var(𝑦) − Var(𝑦 − 𝑦̂) = 2 Cov(𝑦, 𝑦̂) − Var(𝑦̂). (28)

A.2 Euler Contributions

The fitted prediction admits the additive decomposition

𝑦̂ = 𝑦̂1 + 𝑦̂2 , 𝑦̂ 𝑗 = 𝛽̂ 𝑗𝑋𝑗 . (29)

The Euler decomposition yields feature-level contributions

𝐶 𝑗 = 2 Cov(𝑦, 𝑦̂ 𝑗) − Cov(𝑦̂ , 𝑦̂ 𝑗). (30)

In the bivariate case, these take the explicit form

𝐶1 = 2 𝛽̂1 Cov(𝑦, 𝑋1) − 𝛽̂1

(
𝛽̂1 + 𝜌 𝛽̂2

)
, (31)

𝐶2 = 2 𝛽̂2 Cov(𝑦, 𝑋2) − 𝛽̂2

(
𝛽̂2 + 𝜌 𝛽̂1

)
. (32)
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A.3 Comparison with Pratt Allocation
The Pratt (1987) decomposition assigns importance proportional to

𝑃𝑗 = 𝛽̂ 𝑗 Cov(𝑦, 𝑋𝑗), (33)

where 𝛽̂ 𝑗 are ordinary least squares estimates. These attribution components

reflects marginal association between each regressor and the outcome.

Under ordinary least squares estimation, in the estimation sample, the

orthogonality conditions imply

Cov(𝑦 − 𝑦̂ , 𝑋𝑗) = 0, (34)

so that

Cov(𝑦, 𝑋𝑗) = Cov(𝑦̂ , 𝑋𝑗) = (𝛴𝑋 𝛽̂)𝑗 . (35)

Substituting into the Euler contribution yields

𝐶 𝑗 = 𝛽̂ 𝑗 Cov(𝑦, 𝑋𝑗) = 𝑃𝑗 , (36)

up to a common scaling factor. Thus, in-sample under ordinary least

squares estimation for 𝛽̂, the Euler and Pratt decompositions induce identical

proportional attributions, despite decomposing different objects.

Outside this special case, for example out of sample, under regulariza-

tion, or for misspecified models, the orthogonality conditions fail. Then

Cov(𝑦, 𝑋𝑗) ≠ Cov(𝑦̂ , 𝑋𝑗), and the two attributions diverge.

A.4 Interpretation
The bivariate example highlights the central distinction emphasized in this

paper. The Euler decomposition allocates realized predictive performance of

a fixed prediction by measuring how each component contributes to reducing

mean squared error. The attribution depends on both alignment with the

outcome and interaction with other fitted components.

By contrast, the Pratt (1987) decomposition attributes marginal association

with the outcome and coincides with Euler attribution only under the orthog-

onality conditions imposed by in-sample ordinary least squares. Outside that

special case, only the Euler decomposition continues to provide a coherent,

additive allocation of realized predictive accuracy.
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B Standard Errors
This appendix derives standard errors for the Euler contributions to regression

fit

𝐶 𝑗 = 2 Cov(𝑦, 𝑦̂ 𝑗) − Cov(𝑦̂ , 𝑦̂ 𝑗), (37)

for a fixed model 𝑦̂ =
∑𝐾
𝑘=1

𝑦̂𝑘 with additive structure. We evaluate these

contributions in a given sample. The standard error calculation is the same

for training and test samples. This is true because we condition on the fitted

prediction function 𝑦̂(·) and treat the model as fixed. Under a given model,

inference reflects sampling variability in the empirical covariances used to

evaluate model fit, not uncertainty due to re-estimation of the model.

The standard errors are useful for assessing whether observed variations

in contributions 𝐶 𝑗 reflect sampling variability in the evaluation data or

meaningful changes in the relevance of individual prediction components.

B.1 Euler Contributions as Covariances

In deriving the standard errors for the contributions, it is helpful to express

the contributions as a single covariance. Let

𝑎̃𝑖 = 2𝑦𝑖 − 𝑦̂𝑖 and 𝑏̃𝑖 𝑗 = 𝑦̂𝑖 𝑗 . (38)

Here, subscript 𝑖 refers to observation 𝑖 and subscript 𝑗 to prediction compo-

nent 𝑗. Define the centered versions 𝑎𝑖 = 𝑎̃𝑖 −E[ 𝑎̃ ] and 𝑏𝑖 𝑗 = 𝑏̃𝑖 𝑗 −E[ 𝑏̃ ], where

expectations are sample means over 𝑁 observations. To simplify notation,

we drop tildes after centering. The sample means E[ 𝑎̃ ] and E[ 𝑏̃ ] correspond

to the mean-only baseline. Then, each contribution can be written as a single

covariance,

𝐶 𝑗 = Cov(𝑎, 𝑏 𝑗) = E[𝑎𝑖 𝑏𝑖 𝑗]. (39)

We can collect 𝑐𝑖 𝑗 into a 𝐾-vector

𝑐𝑖 = (𝑐𝑖1 , . . . , 𝑐𝑖𝐾)⊤ , 𝑐𝑖 𝑗 = 𝑎𝑖 𝑏𝑖 𝑗 . (40)

Now, we can write the vector of all Euler contributions as

𝐶 = (𝐶1 , . . . , 𝐶𝐾)⊤ = E[𝑐𝑖]. (41)
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B.2 Covariance Estimate
Under i.i.d. sampling on the evaluation sample, define the per-observation

covariance matrix

𝛴 = Cov(𝑐𝑖) = E
[
(𝑐𝑖 − E[𝑐𝑖])(𝑐𝑖 − E[𝑐𝑖])⊤

]
. (42)

We estimate 𝛴 by the usual sample covariance of {𝑐𝑖},8

𝛴 = E
[
(𝑐𝑖 − 𝐶)(𝑐𝑖 − 𝐶)⊤

]
, (43)

Because 𝐶 = E[𝑐𝑖] is the sample average of 𝑐𝑖 across 𝑁 observations, we

have Cov(𝐶) = 𝛴/𝑁 . Finally, the standard error for 𝐶 𝑗 is

SE(𝐶 𝑗) =
√

1

𝑁
𝛴 𝑗 𝑗 =

√
1

𝑁
E
[
(𝑐𝑖 𝑗 − 𝐶 𝑗)2

]
. (44)

For a group of features 𝐺 ⊆ {1, . . . , 𝐾} we can define the 0/1 indicator

vector 1𝐺 ∈ R𝐾 and define the grouped contribution 𝐶𝐺 = 1⊤
𝐺
𝐶. Then, the

variance of the grouped contributions is

𝜎̂2(𝐶𝐺) =
1

𝑁
1⊤𝐺 𝛴 1𝐺 (45)

and

SE(𝐶𝐺) =
√

1

𝑁
1⊤
𝐺
𝛴 1𝐺 =

√
1

𝑁
E[(𝑐𝑖𝐺 − 𝐶𝐺)2]. (46)

Although we have derived an analytical 𝐾×𝐾 covariance matrix, we do not

need to estimate the full covariance matrix 𝛴. The standard error calculations

in equation (44) require only one variance per feature; the standard error

calculations in equation (46) require only one variance per grouped feature.

Even for large 𝐾, we can compute these standard errors without any need to

estimate or regularize a full covariance matrix.

In-sample versus out-of-sample evaluation

Because we are decomposing the fit of a given model, the derivation conditions

on the fitted model 𝑦̂(·). As a result, the same formulas apply in-sample and

out-of-sample. The only difference is the sample used to form 𝑐𝑖 and its size

𝑁 . The calculations are the same.

8
If the evaluation sample exhibits heteroskedasticity or serial dependence, we can replace

the i.i.d. estimator (43) with a HAC estimator applied to the time series {𝑐𝑖𝑡}.
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OLS as a special case

If we estimate the model by ordinary least squares on the same sample, the

normal equations imply Cov(𝑒 , 𝑦̂ 𝑗) = 0 identically, where 𝑒 = 𝑦 − 𝑦̂. In this

case, the contribution reduces algebraically to

𝐶 𝑗 = Cov(𝑦, 𝑦̂ 𝑗). (47)

Of course, the vanished term is not estimated with error; it is exactly zero

for every sample under in-sample ols. The covariance estimator (43) applies

directly to the reduced estimator, which coincides algebraically with (37).

Once again, the calculations are the same.

Auxiliary regression interpretation

Equation (41) implies that we can view each contribution 𝐶 𝑗 as the intercept

in a constant-only auxiliary regression

𝑐𝑖 𝑗 = 𝛼 𝑗 + 𝜀𝑖 𝑗 , (48)

with 𝑐𝑖 𝑗 = 𝑎𝑖 𝑏𝑖 𝑗 , as before. The ols estimator of the intercept satisfies

𝛼̂ 𝑗 = 𝑐 𝑗 = 𝐶 𝑗 , and the corresponding ols standard error is equation (44).
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