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Abstract

We use Euler’s theorem to decompose predictive accuracy in regression models. The re-
sulting contributions allocate realized predictive performance across additive components
of a prediction, providing a natural, additive, and model-conditional measure of feature
importance. We also derive standard errors for the contributions, allowing formal inference
and facilitating model monitoring over time.

In this framework, a component contributes positively to predictive performance if it
moves the prediction closer to the outcome, either by directly explaining the outcome or
by correcting errors left by other components.

Under ordinary least squares estimated in sample, the resulting proportional attribu-
tions coincide with the Pratt decomposition of explained variance. Outside the estimation
sample and beyond ordinary least squares, the Euler decomposition remains well defined
for any prediction with an additive structure, yielding a unified notion of feature importance
that does not rely on estimator-specific orthogonality conditions.
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1 Introduction

In regression and machine learning models, we often wish to gauge the
importance of individual features, especially when the number of included
features is large.! This objective has given rise to a wide range of feature-
importance measures.

In this paper, we focus on evaluating realized predictive performance
for a given, fitted model. We measure model fit as the reduction in mean
squared error relative to an intercept-only baseline predictor. This loss-
based notion of predictive performance is well defined both in and out of
sample and applies uniformly across linear and nonlinear prediction methods.
Rather than allocating importance across a space of potential models or
counterfactual feature inclusions, we attribute realized improvements in
predictive accuracy to additive components of the deployed prediction itself.
This perspective naturally supports model monitoring, diagnostics, and
performance attribution for an existing model whose structure and fitted
values are treated as fixed. The Euler decomposition provides a unified and
computationally efficient way to attribute realized improvement in predictive
accuracy across prediction components, without reference to the estimation
procedure that produced them.

We show that the reduction in mean squared error admits an exact Euler
decomposition when expressed in terms of its homogeneous components.
The resulting attribution allocates predictive fit across additive prediction
components based on their contribution to reducing realized forecast error.
The decomposition is model-conditional: it attributes realized predictive
performance for the prediction actually used and does not rely on counterfac-
tual refitting, feature removal, or perturbation. This mirrors the marginal
contribution framework used in portfolio risk attribution (Litterman, 1996;
Tasche, 2008), where total risk is allocated across additive portfolio compo-
nents, holding fixed the actual portfolio and without reference to the portfolio
construction method.

A large literature proposes measures of “relative importance” based on
partitioning predicted variation, including standardized coefficient measures
following Pratt (1987), heuristic variance partitions proposed by Bring (1995),
and Shapley-value or dominance-based decompositions developed by Linde-
man, Merenda, and Gold (1980) and Kruskal (1987). These approaches differ
in their axiomatic foundations and computational complexity, but they often

share a common focus on decomposing predictions or predicted variance

1 We use the term regression model in the broad sense of a model for predicting a continuous
outcome, rather than to refer to a specific estimation method.
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across features. Many of these measures prove useful when exploring alter-
native model specifications, comparing competing models, or interpreting
individual predictions. Our approach differs in that it attributes realized
predictive performance for a fixed, deployed model, rather than allocating
importance across hypothetical model variations.

In the proposed decomposition, an Euler component contributes positively
to predictive performance if it moves the prediction closer to the outcome,
either by directly explaining the outcome or by correcting errors left by other
components. Unlike variance- or correlation-based measures, the attribution
depends on how components interact within the fitted prediction rather than
just on their marginal associations with the outcome. The attribution requires
only realized predictions and their additive components, without refitting,
perturbation, or estimator-specific orthogonality conditions.

Inlinear regression models, predictions decompose naturally into regressor-
specific components given by features multiplied by their fitted coefficients.
The Euler decomposition applies equally to ordinary, weighted, or regularized
linear models, including generalized least squares, Ridge, Lasso, and Elastic
Net regressions. More generally, the same logic applies to any predictive
model whose predictions decompose into additive components of interest.

Finally, we derive standard errors for the Euler contributions that reflect
sampling variability in the data. This allows us to assess whether observed
variation in feature contributions across samples or over time is plausibly

attributable to noise or instead reflects changes in predictive relevance.

The remainder of the paper proceeds as follows. Section 2 introduces
the loss-based framework and derives the Euler decomposition of predic-
tive accuracy, together with standard errors. Section 3 examines the linear
regression case and its connection to in-sample OLS and the Pratt decom-
position. Section 4 presents Monte Carlo illustrations. Section 5 relates the
approach to existing feature-importance measures. Section 6 discusses exten-
sions, including grouped attributions and broader applicability. Section 7
concludes.

2 An Euler Decomposition of Explained Fit

After establishing notation and defining predictive accuracy, we can apply
Euler’s theorem to obtain an exact additive decomposition of model fit across
prediction components and derive the corresponding standard errors.
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2.1 Setup
Let 7 € RN denote a vector of observed outcomes with finite, nonzero variance
and define the centered outcome

y =7 —-El7] 1)

We interpret the intercept-only predictor /g = E[#] as the baseline model and
evaluate predictive performance relative to this baseline.

Throughout, expectations, variances, and covariances are sample averages.
Since y is centered, E[y] = 0 and Var(y) = E[y?].

Let 7 € RN denote the predictions of a regression or forecasting model,
and assume that ¥ is centered so that E[y] = 0.2

We measure predictive accuracy using mean squared error and define the

improvement in fit relative to the baseline predictor as®

AL = Var(y) — Var(y — y). )

With perfect predictions i = y, predictive accuracy attains a maximum value
of Var(y). With poor predictions, predictive accuracy can be close to 0 or
even negative.

If we scale the predictive accuracy by Var(y), we obtain the standard
regression coefficient of determination

R2 AL Var(y — ¥)

~ Var(y) Var(y)

®)

Although the expression R? = Var(y)/Var(y) is often treated as equivalent,

this is only true when predictions ¥ are orthogonal to prediction errors

y — ¥. Although this condition holds in-sample for ordinary least squares

regressions, this is a special case. Without this orthogonality, AL remains a

measure of predictive accuracy while Var(y)/Var(y) compares the scale of

predictions and outcomes without any notion of alignment between them.
Expanding the squared error yields

AL(y) =2 Cov(y,y) — Var(y). 4)

2 If the fitted model includes an intercept and is evaluated on centered regressors, this
condition holds automatically. In regularized regressions, the intercept is typically excluded
from regularization to preserve this property.

3 Defining explained fit relative to an intercept-only baseline model is partly conceptual and
partly a matter of convenience. The intercept is not a feature, but a normalization that centers
predictions and defines the baseline level of predictive accuracy. The Euler decomposition
allocates only the incremental explained fit arising from additive prediction components beyond
the mean. When the contribution of the unconditional mean is of interest, we can track it
separately as a baseline component of total fit.
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This quantity measures realized predictive accuracy of the model relative
to the intercept-only baseline. It is well defined both in and out of sample
and does not rely on orthogonality or optimality conditions specific to any

estimation procedure.

2.2 Euler Decomposition
The improvement in predictive accuracy is the difference of two homogeneous

functions,

AL(Y) = s1(y) — $2(¥), 5)

where ¢1(y) = 2Cov(y, y) and g2(y) = Var(y). The first term g1 is homoge-
neous of degree one in ¥, while the second term g, is homogeneous of degree
two in .

For a function homogeneous of degree k, Euler’s theorem states g(x) =
1xTVg(x).

We can apply Euler’s theorem separately to each term. Euler’s theorem

implies
—~ - 091 2 _
_ _pTZ8l _ £ =T
s1y) =2 Cov(y,y) =y a7 “NYY (6)
and
@ =Vari) = 27782 = L7y @
@ =Va@) =35 55 = g¥'7

Although Euler’s theorem resembles a local, gradient-based expansion, it
is an exact identity for homogeneous functions and holds globally for all
admissible inputs.

In linear regression and quadratic risk models, feature or asset contribu-
tions follow immediately from covariance algebra. These decompositions can
also be viewed as special cases of Euler decompositions of homogeneous fit or
risk measures. We adopt the Euler perspective because it extends unchanged
to nonlinear models and alternative loss functions.

In many regression models, the fitted signal admits an additive decompo-
sition

7=,7 ®)

where ¥; denotes a component of the prediction associated with feature,
regressor, or model component j.
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In linear regression models with an intercept and centered regressors,
each regressor-specific fitted component is automatically mean zero. In
more general additive decompositions, component means are not uniquely
determined: constants can be shifted arbitrarily across components without
affecting the overall fitted prediction. To obtain a well-defined attribution,

we therefore impose the normalization
E[y;]1=0 for all j, 9)

which assigns all level effects to the intercept-only baseline. This normaliza-
tion does not affect the fitted predictions or the model’s predictive accuracy,

but it is essential for identifying component-level contributions.

This gives an exact additive decomposition of predictive accuracy in terms

of ¥j,
AL®{) = Z,- o (10)
Cj =2 Cov(y,y;) — Cov(y, ¥j) (11)
= Cov(y, yj) + Cov(e, ;). (12)

The structure of the Euler contribution has a geometric interpretation,
illustrated in figure 1. View y, i/, and the additive components ¥; as vectors
in RN equipped with the inner product (a, b) = Cov(a, b). Because the model
has already been fitted, all of these objects in figure 1, including the realized
prediction error e = y — ¥, are fixed.

The Euler contribution C; summarizes how component y/; aligns with these
other realized objects. The first term measures how strongly the component
aligns with the outcome y. The second term rewards alignment with the
realized error. A component improves predictive accuracy to the extent
that it aligns with the outcome and, conditional on the full fitted prediction,
aligns with the error vector e. Such alignment indicates that the component
contributes to reducing the distance between the fitted prediction i and the
outcome y, and therefore to lowering squared error. Conversely, a component
that points away from the error contributes to a larger distance between ¥
and y and therefore worsens predictive accuracy. Components that primarily
reinforce other fitted components without aligning with the error receive
smaller or even negative contributions.

Additive prediction components y; necessarily distribute themselves

around the fitted value y. This distribution creates dispersion in alignment
with e and thereby produces winners and losers in the Euler attribution, even
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Figure 1: Geometry of Euler Contributions to Model Fit

Yk
The figure illustrates the Euler decomposition of realized regression fit for an outcome vector y
(black) and a fitted value ¥ = ; + ¥k (gray). Two additive prediction components, y/; (red) and
Yk (green), appear with different alignment relative to the prediction error e (blue).

In the Euler decomposition, the contribution of component i/, depends on both its covariance
with y and its covariance with e = y — . These covariances determine whether the component
contributes new explanatory direction or primarily overlaps with the existing fitted value.

In the diagram, both 37/ and Yk align positively with y, but they exhibit different alignment
with the realized residual e. Here, jj; makes a smaller Euler contribution to model fit because
its negative alignment with e contributes to a larger distance between i and y. Conversely, ¥k
makes a larger Euler contribution because its positive alignment with e contributes to a smaller
distance between 7 and y.

The Euler decomposition and the figure do not rely on orthogonality assumptions; angles
represent empirical covariances.

when components exhibit similar alignment with ¥ itself.

A component receives a negative contribution when it primarily offsets
other components and thereby reduces predictive accuracy. Such negative
contributions arise naturally from the variance identity Var(a + b) = Var(a) +
Var(b) + 2 Cov(a, b) and reflect the fact that predictive accuracy depends on
how components interact, not on their magnitudes in isolation.

When monitoring model performance across samples, a persistently
negative Euler contribution need not be problematic; it may simply reflect
stable redundancy or offsetting interactions among prediction components.
By contrast, a contribution that changes sign indicates a change in how the
component interacts with other parts of the fitted prediction. This suggests a
shift in the structure of the predictive signal, especially when the change is
statistically significant.

The Euler decomposition depends only on realized fitted values and
their additive components. It does not differentiate through the estimation
procedure that produced ¥ and does not require refitting, counterfactual
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Algorithm 1: Euler Feature Importance

Inputs:

y : (N,) vector of realized outcomes,
centered internally by the algorithm

Y_hat : (N, K) matrix of fitted signal components
with y_hat = sum_j Y_hat[:, j]

Baseline:
The intercept-only baseline is E[tilde y].
All computations are performed relative to this baseline.

Notes:

For linear models with an intercept and centered regressors,
Y_hat[:, j] = X[:, j] * beta[j] is already mean zero.
Component centering ensures a unique attribution by assigning
all level effects to the intercept-only baseline.

Components are centered internally by the algorithm.

For WLS or GLS, supply y and Y_hat already transformed
by the appropriate weighting or whitening matrix.

FoH W W O H W W IR H KW KWK HHR

# Center outcome (defines intercept-only baseline)
y_c =y - mean(y)

# Aggregate fitted signal and center

y_hat = Y_hat.sum(axis=1)

y_hat_c = y_hat - mean(y_hat)

# Center fitted components (normalization for attribution)
Yc = Y_hat - mean(Y_hat, axis=0)

# Euler contributions to improvement in MSE
for j in range(K): # Can be vectorized
C[j] = C 2 * mean(y_c * Yc[:, j]) - mean(y_hat_c * Yc[:, j1) )

Deltal = sum(C) # Reduction in MSE relative to baseline

# Plain (i.i.d.) standard errors for contributions

N = len(y)

a =2 *y_c - y_hat_c # Observation-level term shared across
features

for j in range(K): # Can be vectorized
c_ij = a * Yc[:, jl] # Observation-level contributions

SE[j] = sqrt( mean((c_ij - C[j1)**2) / N )

# Outputs:

# C : Contributions to model fit

# SE : Standard errors for C

# Deltal : Reduction in MSE relative to intercept-only baseline
# C / Deltal : Proportional contributions

# May be unstable if abs(Deltal) is near 0

feature removal, or orthogonality between fitted values and residuals.

Algorithm 1 summarizes the computation for a general predictive model.
Compared to many competing approaches, these computations are cheap, so
they accommodate a large number of attribution components and frequent
evaluation.
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2.3 Standard Errors

The Euler decomposition expresses feature importance as an estimate derived
from the evaluation data. Each contribution C; is a sample average of
observation-level contributions c;; and therefore inherits sampling variability,
even when the fitted model is treated as fixed. In this sense, feature importance
is not merely a descriptive label attached to a model, but an estimated quantity
whose precision depends on the amount and structure of the evaluation data.

Appendix B shows that standard errors for the Euler contributions C j=
(1/N) X;cij are

SE(C)) = \/%E[(cﬁ -Cy?]. (13)

These standard errors quantify uncertainty due to sampling variability in
the data used to evaluate model fit. They do not reflect uncertainty arising
from re-estimation of the model, which we condition on throughout. As
a result, they apply both in-sample and out-of-sample and can be used to
assess whether observed variation in feature contributions across samples or
over time plausibly reflects noise or instead indicates changes in predictive

relevance.

3 Linear Regressions

Since linear regressions are obvious models with additive prediction com-
ponents, they are an interesting special case. However, it is important to
emphasize that the Euler decomposition does not depend on how the fitted

signal ¥ and its components ¥; are obtained.

3.1 Features as Prediction Components

For linear models of the form iy = XE with centered regressors X, the fitted
signal decomposes naturally into regressor-specific components

7i = Xipj- (14)
Substituting into the Euler contribution yields

Cj =2,B;Cov(y, X;) - B; Cov(y, X)) (15)

—~

= Ej Cov(y, X;j) + Ej Cov(e, Xj), e=y-y. (16)
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The first term reflects the regressor’s marginal association with the outcome,
while the second captures how the regressor-specific fitted component aligns
with the realized prediction error after accounting for the full model.*

This decomposition makes clear that marginal association alone does not
determine predictive contribution. A regressor may have a large marginal
correlation with y yet contribute little to predictive accuracy if its fitted
component primarily reinforces other components without reducing residual
error. Conversely, a regressor with modest marginal explanatory power may
materially improve predictive accuracy by correcting systematic prediction
errors.

3.2 In-sample OLS and the Connection to R-Squared

Ordinary least squares constitutes a special case in which predictive accuracy,
explained variance, and correlation-based measures coincide in sample.
Under ors with centered variables, fitted values i are orthogonal to residuals

¢ =y -y, implying
Cov(e, Xj) =0 for all j, 17)
and therefore
C; = Bj Cov(y, X;). (18)
Summing across features gives
AL = Zj Ej Cov(y, X;) = Cov(y, y) = Var(y), (19)

where the final equality again follows from OLS orthogonality. Normalizing
by Var(y) yields
Re- AL _ Var(y)

~ Var(y) Var(y)’ (20)

In this knife-edge setting, decomposing predictive accuracy, predicted vari-
ance, and R? are equivalent up to scale.

3.3 Pratt decomposition
Pratt (1987) proposes a decomposition of explained variance for linear regres-
sion based on marginal correlations. For standardized regressors estimated

4 Because the fitted signal is linear in the coefficients, Euler contributions can equivalently be
computed by differentiating with respect to §; rather than ¥j, treating X as fixed.
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by ordinary least squares,
R*= ) B;Corr(y, X;), 21
2., Bi Corrly, X)) (21)
and the terms
p; = Ej Corr(y, X;) (22)

are interpreted as measures of variable importance.

The Pratt decomposition therefore allocates explained variance in the estima-
tion sample and implicitly relies on the absence of correlation between fitted
components and residuals.’ By contrast, the Euler decomposition targets
realized predictive accuracy of a fixed fitted model, measured as the reduction
in mean squared error relative to a baseline predictor.

For in-sample oLs with standardized regressors, proportional Pratt and
Euler attributions coincide exactly. This equivalence relies entirely on the
orthogonality conditions imposed by ordinary least squares. Outside this
setting, including out-of-sample evaluation, weighted or generalized least
squares, and regularized linear models, residuals generally correlate with
fitted components, so predicted variance no longer coincides with predictive
accuracy. In these cases, the ratio Var(y)/Var(y) measures the scale of
predictions but contains no information about their alignment with the
outcome.

The Euler decomposition continues to apply without modification in these
cases, providing an exact and additive attribution of realized predictive

accuracy when variance-based decompositions break down.

4 Monte Carlo lllustration

Table 1 provides a numerical illustration of the Euler decomposition. The
simulations use samples of 500 observations for fitting (when applicable) and
500 observations for evaluation, with results aggregated over 100,000 Monte
Carlo replications. The true data-generating process is a linear regression
with five features and coefficients {1.0,0.6,0.0,—0.4,0.2}. All features are
normally distributed with mean zero and unit variance. Features i and j
have pairwise correlation p;; = p"/l. In Panels A and B, p = 0.7. The table
computes sample statistics like Pr(-), E[-] and Med(-) across Monte Carlo

replications.

5 Thomas, Hughes, and Zumbo (1998) provide a geometric interpretation of the Pratt
decomposition.
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Panel A verifies basic accounting identities and numerical stability. The
simulations achieve the intended average out-of-sample R2 values of 0.60,
0.30, 0.10, and 0.02. By construction, the Euler contributions sum exactly to
the total mean-square improvement over the constant-only baseline on each
evaluation sample, and this identity therefore also holds on average across
simulations. Values reported as 0 are within machine precision. The final
column shows that even correctly specified models can fail to improve upon
the mean-only baseline in finite samples, particularly when true R? is low.
As expected, this probability decreases with sample size, although the table
does not explore that dimension.

Panel B compares Euler and Pratt attributions. For these direct compar-
isons, we use the covariance-form for the Pratt components, pj= Cov(y, y’,\j),
which are equal to Pratt’s correlation-based formulation up to variable scale.
The first column confirms the analytical result that, for ordinary least squares,
Pratt and Euler attributions coincide exactly in the training sample. The
second column shows that this equivalence breaks down out of sample:
proportional Pratt and Euler shares can differ materially, with discrepancies
becoming large when R? is low. The third column reports the same compari-
son for Elastic Net regressions. While the qualitative pattern mirrors the OLS
case, regularization dampens estimation error and reduces the divergence
between proportional Pratt and Euler attributions.

Panel C examines the role of feature correlation by varying p. The first
column shows that negative Euler contributions occur in finite samples but
are rare unless features are strongly correlated. The second column indicates
that most negative contributions are small in magnitude: the total share of
negative contributions remains modest except at very high correlations. The
final column confirms that the standard errors derived in appendix B deliver
accurate coverage in this setting.

For brevity, the table suppresses empirical Monte Carlo standard errors.
For nearly all entries, these are below 0.001. The main exceptions occur for
out-of-sample proportional differences between Euler and Pratt attributions at
very low RZ. In these cases, the denominators, AL or Y, i Pj, can occasionally

6 In the simulation setting, we can derive population values for the Euler contribution
components and evaluate standard error coverage relative to these values. The simulations draw
features X ~ N(0, Zx) and outcomes y = X + ¢, with ¢ orthogonal to X in the population. The
fitted prediction function is J = Xp. In this case, the population Euler contribution for feature j
is

C; =2 Cov(y, 7)) - Cov(F, 7)) = B [2(=xp); -~ (=xPB);
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Table 1: Monte Carlo Simulations

Panel A. Simulation characteristics

R? E[R%,,]  E[l%;Cj—-AL]] Pr(AL <0)
0.60 0.599 0 0
0.30 0.299 0 0
0.10 0.099 0 0.000
0.02 0.020 0 0.056

Panel B. Comparison to Pratt
In Sample OLS ~ Out of Sample OLS ~ Out of Sample Elastic Net

R?  E[max;[C; - Pj] Med (maxj ICj/AL~P;/3; pj|)

0.60 0 0.015 0.006
0.30 0 0.029 0.010
0.10 0 0.075 0.022
0.02 0 0.591 0.124

Panel C. Variability of Contributions (Target R? = 0.30)

Negative mass Standard Errors
p Pr(C; <0) E[ch<0 ICil/AL] 95% coverage
0.00 0.029 0.002 0.949
0.30 0.078 0.006 0.949
0.60 0.183 0.038 0.949
0.90 0.200 0.203 0.948

The table reports Monte Carlo simulations with sample size 500 in the separate
training and evaluation samples across 100,000 replications. The data-generating
process is a linear model with K = 5 features and coefficients {1.0, 0.6, 0.0, 0.4, 0.2}.
Regressors are jointly normal with mean zero, unit variance, and pairwise correlation
pij = p|i_f . In Panels A and B, p = 0.7; panel C varies p. We set noise variance to
target the listed population R? values. Entries reported as 0 are numerically zero
within machine precision.

Euler contributions are C; = 2 Cov(y, y;) — Cov(y, ;) and sum to AL = Var(y) —
MSE(y — ) on each evaluation sample, up to floating-point error. Pratt contributions
are P; = Cov(y,yj). (We use the covariance-form for Pratt components, which
coincide with Pratt’s correlation-based formulation for standardized variables.) The
corresponding proportional attributions are Cj/AL and P;j/3; P;.

Panel A reports average out-of-sample R?, the absolute add-up error | 3] iGi—
AL|, and the frequency with which AL < 0. Panel B reports medians of the
indicated discrepancies between Euler and Pratt attributions under ors and Elastic
Net estimation. Panel C reports the frequency of negative Euler contributions, the
share of total contribution mass attributable to negative C;, and empirical coverage of
analytical 95% confidence intervals.

be close to zero, leading to numerically unstable proportional allocations
even when the underlying level contributions remain well behaved.
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5 Relation to Existing Measures

Feature-importance measures differ fundamentally in the object they seek
to explain. The framework developed here attributes predictive accuracy,
measured as the reduction in loss relative to a baseline predictor, to the
components of a fixed fitted model. The resulting attribution is explicitly
model-conditional and answers the question: which features actually generated
the predictive performance of the model that was used?

Many existing measures instead assess association with the outcome,
sensitivity of predictions to inputs, or counterfactual performance under
feature removal or refitting. These quantities are useful for other purposes,
but they generally do not decompose the realized predictive accuracy of a
given fitted model.

Measures that refit models under alternative feature combinations are
clearly different from our model-conditional contributions. They can assess
the potential usefulness of features within a modeling approach, but they
cannot attribute feature contributions to model fit for a specific, fixed model.
In particular, refitting-based measures are poorly suited to identifying models
that include the right features but assign them incorrect parameters.

5.1 Shapley and Perturbation Methods

Decompositions based on Shapley (1953), feature perturbations, and feature
permutations are general attribution tools that can be applied to a wide
range of model outputs or performance metrics. In practice, they are most
commonly used to explain individual predictions by attributing deviations of
a prediction function i = f(x) from a baseline such as the unconditional
mean; see Lundberg and Lee (2017), for example. These prediction-level
explanations can be useful for interpreting individual predictions, but they
address a fundamentally different question than attribution of predictive
accuracy for the model overall.

In principle, Shapley values can be applied to measures of model fit, such as
mean squared error or R%. Doing so requires counterfactual evaluation under
feature removal or refitting. Without refitting, Shapley and perturbation
methods measure the sensitivity of a fixed model to input disruption; with
refitting, they measure feature substitutability across alternative models.
In either case, the resulting attributions do not decompose the realized
performance of the fitted model actually used.

This distinction is particularly stark in sparse or regularized models.
A feature excluded from the fitted model contributes nothing to realized
predictive accuracy and therefore receives zero Euler attribution. With
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refitting, however, the same feature may receive positive importance because
it can substitute for other features in counterfactual re-optimizations.

Ordinary least squares again constitutes a special case. Because explained
variance is a homogeneous quadratic function of the fitted coefficients, Shapley
values for explained variance computed without refitting coincide with Euler
attributions. This equivalence reflects the quadratic structure of least squares
and does not extend to loss-based accuracy measures, regularized models, or
out-of-sample evaluation.

Shapley and perturbation methods are therefore best interpreted as tools for
assessing feature reliance, robustness, or substitutability under information
removal. They are also computationally expensive due to the large number of
feature subsets they evaluate. By contrast, the Euler decomposition provides
an exact, additive, model-conditional attribution of explained predictive
accuracy at negligible computational cost once fitted values are available.

Unlike the Euler contributions, related measures of feature importance
generally do not provide standard errors, even though they are clearly subject
to sampling variation. This may be because they are often treated as indicators,
not statistics, or because the standard errors are challenging to derive, which

is certainly true under re-fitting of the model.

5.2 Informal Measures

A number of ad hoc feature-importance measures are widely used in prac-
tice, including standardized coefficients, squared standardized coefficients,
absolute f-statistics, and marginal correlations with the dependent variable.
These measures are appealing for their simplicity but do not have a principled
interpretation as contributions to predictive accuracy.

Standardized coefficients adjust for regressor scale but ignore interactions
among regressors in producing the fitted signal. Absolute f-statistics and
p-values measure statistical significance rather than contribution to model
performance. Marginal correlations reflect association with the outcome
rather than contribution to the fitted model.

While these quantities can be useful for exploratory analysis or hypothesis
testing, they address questions distinct from the decomposition of realized
predictive accuracy considered here.

6 Extensions

We briefly discuss that we can easily group Euler contributions and that Euler
contributions apply to a surprisingly broad class of prediction models.
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6.1 Grouped Euler Decomposition

Because Euler contributions sum to total explained predictive accuracy, we can
aggregate them naturally across groups of components to assess group-level
importance.

The Euler decomposition applies to any number of additive components,
including settings in which the number of components exceeds the number of
observations. When components are numerous or highly collinear, individual
contributions may be small or noisy, reflecting redundancy or cancellation
within the fitted model. In such cases, aggregating related components yields
more stable and interpretable attributions of predictive performance.

Suppose the prediction components are partitioned ex ante into disjoint
groups. Define the contribution of group G as

Ce=D, .. (23)

By additivity of Euler contributions,

AL = ZG Ce, (24)

so the decomposition allocates total predictive accuracy exactly across groups.

Grouped Euler attribution reconciles diffuse importance across inter-
changeable individual components with concentrated attribution at the level
of shared information sources. This logic parallels Owen values (Owen, 1977),
which provide group-wise Shapley allocations, but avoids the combinatorial
cost of counterfactual evaluation. Once the fitted model is available, we
obtain grouped Euler contributions by direct aggregation at essentially no

additional computational cost.

6.2 Scope of Euler Attribution

The Euler decomposition applies to any prediction method whose fitted

signal admits a meaningful additive decomposition. The attribution is

model-conditional: it allocates realized predictive performance to the fitted

prediction components, regardless of how the prediction was constructed.
Any fitted signal that can be written as

7= (25)

therefore supports Euler attribution, which assigns importance directly to the
additive prediction components ¥;. This logic does not rely on least squares
or on orthogonality conditions.
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Linear regression provides the canonical example, since the fitted signal
decomposes naturally into regressor-specific components y; = X]-E]-. The
same additive structure extends immediately to weighted and generalized
least squares, where Euler attribution follows after applying the implied
weighting or whitening transformation. Penalized linear models, including
Ridge (Hoerl and Kennard, 1970), Lasso (Tibshirani, 1996; Zou, 2006), and
Elastic Net (Zou and Hastie, 2005), likewise admit Euler attribution because
their fitted signals remain linear combinations of regressors, even though
these models violate ordinary least squares orthogonality conditions.

Generalized linear models also admit Euler attribution when we take the
fitted signal to be the linear predictor 1 = XE, rather than the conditional
mean ¢~!(7). On this scale, which often provides the most natural object for
interpretation, the fitted signal decomposes additively into regressor-specific
components 7; = X;B;./

More broadly, any model with an explicitly additive predictor supports
Euler attribution on that scale. Generalized additive models provide such a
decomposition by construction. Many machine learning methods likewise
produce fitted signals that are additive in meaningful internal components;
see Hastie, Tibshirani, and Friedman (2009). Ensemble methods, including
boosting and random forests, express predictions as sums of weak learners,
while kernel methods admit additive representations in terms of training
examples or kernel components.

We treat prediction components as primitive and do not require them to
correspond to original input features. In polynomial models, neural networks,
and other nonlinear architectures, predictions are linear in large collections
of constructed features or internal activations, and Euler attribution assigns
realized predictive performance directly to these components.

When the object of interest is attribution to the original input variables
themselves, a direct additive decomposition of the fitted signal is generally
unavailable outside linear models. In such settings, attribution requires
aggregating marginal effects across nonlinear and interaction terms. The
path-integral attribution developed in Hentschel (2026) extends the loss-based
logic to input space, even when prediction components are not linear in the
original features.

7 Attribution on the mean scale generally requires nonlinear transformations and does not
admit a simple additive decomposition.
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7 Conclusion

This paper develops an Euler decomposition of realized predictive accuracy
for regression models with additive prediction components. Measuring
model performance as the reduction in mean squared error relative to an
intercept-only baseline yields an exact, additive, and model-conditional
attribution of explained fit across the components of a fitted prediction.

The resulting attribution answers a practical question: How much has
each component of a deployed model contributed to its realized predictive
accuracy? Unlike refitting-, perturbation-, or permutation-based approaches,
the decomposition conditions on the prediction actually used and avoids
counterfactual feature removal or re-optimization. This makes it well suited
for model monitoring, diagnostics, and performance attribution.

The framework applies to any predictive system whose fitted signal
admits an additive decomposition into components of interest. Because Euler
attribution operates solely on realized predictions and their components, it is
computationally cheap relative to model estimation, making frequent model
evaluation feasible.

We also derive standard errors for the Euler contributions that reflect
sampling variability in the evaluation data while conditioning on the fitted
model rather than the estimation process. These standard errors enable formal
inference on feature importance and facilitate monitoring of contribution
stability over time.

Under ordinary least squares evaluated in sample, orthogonality conditions
cause explained predictive accuracy to coincide with explained variance,
and proportional Euler attributions are equal to familiar variance-based
decompositions such as the Pratt allocation. Outside this special case,
including out-of-sample evaluation and regularized or weighted estimation,
explained variance no longer coincides with predictive accuracy. The Euler
decomposition, by contrast, remains well defined and additive.
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A Bivariate Regression lllustration

This appendix provides a simple bivariate illustration of the Euler decompo-
sition of improvement in mean squared error and contrasts it with marginal-
correlation-based allocations such as the Pratt (1987) decomposition. The
example is purely analytic and clarifies how Euler contributions behave in
the presence of correlated regressors.

A.1 Setup

Let X; and X; be centered regressors with unit variance and correlation p, so
that their covariance matrix is

zxz(l p). (26)
p 1

Consider a linear prediction of the form
7=p1X1 +paXa, 27)

where 1 and B, need not be ordinary least squares estimates.

We assume that the outcome y is centered, so that the intercept-only
baseline prediction is zero. We measure predictive performance by the
reduction in mean squared error relative to this baseline,

AL = Var(y) — Var(y — y) = 2 Cov(y, i) — Var(y). (28)

A.2 Euler Contributions

The fitted prediction admits the additive decomposition
T=hi+T 5= B (29)
The Euler decomposition yields feature-level contributions
Cj =2 Cov(y, y;) — Cov(y, ¥)). (30)
In the bivariate case, these take the explicit form

C1 =281 Cov(y, X1) - B1(B1 + pB2), (31)
Cy =22 Cov(y, Xa) — B2 (B2 + p B1)- (32)
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A.3 Comparison with Pratt Allocation

The Pratt (1987) decomposition assigns importance proportional to
P; = Bj Cov(y, Xj), (33)

where Ej are ordinary least squares estimates. These attribution components
reflects marginal association between each regressor and the outcome.

Under ordinary least squares estimation, in the estimation sample, the
orthogonality conditions imply

Cov(y —¥,X;) =0, (34)
so that
Cov(y, X;j) = Cov(¥, X)) = (Zxp);- (35)

Substituting into the Euler contribution yields
Cj = Bj Covly, X;) = P, (36)

up to a common scaling factor. Thus, in-sample under ordinary least
squares estimation for E, the Euler and Pratt decompositions induce identical
proportional attributions, despite decomposing different objects.

Outside this special case, for example out of sample, under regulariza-
tion, or for misspecified models, the orthogonality conditions fail. Then
Cov(y, X)) # Cov(y, Xj), and the two attributions diverge.

A.4 Interpretation

The bivariate example highlights the central distinction emphasized in this
paper. The Euler decomposition allocates realized predictive performance of
a fixed prediction by measuring how each component contributes to reducing
mean squared error. The attribution depends on both alignment with the
outcome and interaction with other fitted components.

By contrast, the Pratt (1987) decomposition attributes marginal association
with the outcome and coincides with Euler attribution only under the orthog-
onality conditions imposed by in-sample ordinary least squares. Outside that
special case, only the Euler decomposition continues to provide a coherent,
additive allocation of realized predictive accuracy.
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B Standard Errors

This appendix derives standard errors for the Euler contributions to regression
fit

Cj =2 Cov(y,y;) — Cov(y, yj), (37)

for a fixed model i = Zle Yk with additive structure. We evaluate these
contributions in a given sample. The standard error calculation is the same
for training and test samples. This is true because we condition on the fitted
prediction function ¥(-) and treat the model as fixed. Under a given model,
inference reflects sampling variability in the empirical covariances used to
evaluate model fit, not uncertainty due to re-estimation of the model.

The standard errors are useful for assessing whether observed variations
in contributions C; reflect sampling variability in the evaluation data or

meaningful changes in the relevance of individual prediction components.

B.1 Euler Contributions as Covariances

In deriving the standard errors for the contributions, it is helpful to express
the contributions as a single covariance. Let

Ej = Zyi - y\i and bi]' = :’V\z] (38)

Here, subscript i refers to observation i and subscript j to prediction compo-
nent j. Define the centered versions a; = a; —E[a | and b;j = Ej —E[g], where
expectations are sample means over N observations. To simplify notation,
we drop tildes after centering. The sample means E[ 4 | and E[ 5] correspond
to the mean-only baseline. Then, each contribution can be written as a single

covariance,
Cj = Cov(a,bj) = E[a; bj;]. 39)
We can collect ¢;; into a K-vector
ci =(cit, ..., cix)', cij = a; bjj. (40)
Now, we can write the vector of all Euler contributions as

C= (C1,...,CK)T =E[Ci]. (41)
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B.2 Covariance Estimate
Under i.i.d. sampling on the evaluation sample, define the per-observation
covariance matrix

L = Cov(ci) = E[(ci — Elci])(ci —Elci])T] - (42)
We estimate X by the usual sample covariance of {c;},?
Z=E[-Oi-O)], (43)

Because C = E[c;] is the sample average of c; across N observations, we
have Cov(C) = £/N. Finally, the standard error for C; is

15 1
SE(C]') = \/ﬁ Lijj= \/ﬁ E[(Cij —Cj)2]. (44)
For a group of features G C {1, ..., K} we can define the 0/1 indicator
vector 1 € RX and define the grouped contribution Cg = 1.C. Then, the
variance of the grouped contributions is

~ 1 ;<
G%(Cg) = N 1. X1g (45)

and

SE(Cc) = \/ 12516 = \/ < Blleic - CoPl. (46)

Although we have derived an analytical K X K covariance matrix, we do not
need to estimate the full covariance matrix Z. The standard error calculations
in equation (44) require only one variance per feature; the standard error
calculations in equation (46) require only one variance per grouped feature.
Even for large K, we can compute these standard errors without any need to
estimate or regularize a full covariance matrix.

In-sample versus out-of-sample evaluation

Because we are decomposing the fit of a given model, the derivation conditions
on the fitted model y(-). As a result, the same formulas apply in-sample and
out-of-sample. The only difference is the sample used to form ¢; and its size
N. The calculations are the same.

8 If the evaluation sample exhibits heteroskedasticity or serial dependence, we can replace
the i.i.d. estimator (43) with a HAC estimator applied to the time series {c;;}.
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OLS as a special case
If we estimate the model by ordinary least squares on the same sample, the
normal equations imply Cov(e, y;) = 0 identically, where e = y — ¥. In this

case, the contribution reduces algebraically to
C; = Cov(y, yj). (47)

Of course, the vanished term is not estimated with error; it is exactly zero
for every sample under in-sample ors. The covariance estimator (43) applies
directly to the reduced estimator, which coincides algebraically with (37).

Once again, the calculations are the same.

Auxiliary regression interpretation
Equation (41) implies that we can view each contribution C; as the intercept

in a constant-only auxiliary regression
Cij = aj + &ij, (48)

with ¢;; = a;bjj, as before. The oLs estimator of the intercept satisfies
a; = ¢; = Cj, and the corresponding ots standard error is equation (44).
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